捏 造 理 論
2024/08/12 更新
2024/07/14 更新 (第1準備書面をhtml化)
2024/04/26 更新 (訴状をhtml化)
2024/04/21 更新
2024/04/18 更新 (棒の法則 復元)
2024/04/10 更新 (レスポンシブデザインに対応)
2024/02/18 更新 (出願の経緯 訴状掲載)
2023/06/11 更新開始
2024年 8月 6日 事件番号 令和6年(行ケ)第10014号 審決取消(特許) の弁論準備手続(非公開)が14:00からオンラインで行われ、被告・原告共これ以上主張すべきことが無いことが確認されました。
次回は 2024年 9月18日(水)15:30~ 知的財産高等裁判所(東京都目黒区) 3F 303号法廷にて口頭弁論(公開)が行われる予定です。公開なので傍聴できるのかもしれません。
2024年 7月12日 第1準備書面を知的財産高等裁判所宛に発送しました。次回弁論準備手続期日は2024年 8月 6日(オンライン)の予定です。
2024年 4月19日 事件番号 令和6年(行ケ)第10014号 審決取消(特許) の弁論準備手続があり、今後の大まかな日程が決まりました。結審するのが本年9月初め、その後判決となる見通しです。
2024年 2月18日 特許庁長官を被告とする訴状を知的財産高等裁判所(東京都目黒区)宛に発送しました。
「加速回収発電機」の出願に関する手続きの経緯はこちら
https://www.j-platpat.inpit.go.jp/c1800/PU/JP-2022-169197/7E413ADDDA227A51AE28A1425DD4B6FB2182369550AADF4043120624B307D55B/11/ja
令和6年(行ケ)第10014号 審決取消請求事件
原告 今井 直孝
被告 特許庁長官 濱野 幸一
正 本
副本直送
第1準備書面
令和6年7月12日
知的財産高等裁判所 第4部 御中
原告 今井 直孝
1 令和6年4月19日の弁論準備手続期日において確認された争点に関する主張
イ 取消事由1(発明該当性(特許法29条1項柱書)に関する判断の誤り)
欠陥が指摘され、明らかに誤りである《エネルギー保存の法則》を根拠として法を執行することは、法の乱用にあたり無効な法執行であると主張します。
ロ 取消事由2(実施可能要件(特許法36条4項1号)についての判断の誤り)
該発明の特許請求の範囲は、乙第3号証に示す通りです。
【請求項1】に記述される装置は、乙第4号証 1ページ目【図2】で説明される装置です。
【請求項2】に記述される装置は、乙第4号証 2ページ目【図3】で説明される装置です。
【請求項3】に記述される装置は、乙第9号証 7ページ目 図5 で説明される装置です。(出願時は図による説明は、不要と判断し省略していました。)
【請求項1・2】の装置が遠心力により推進力を得る原理は、それぞれ【図2・3】により説明されています。
【請求項1~3】の装置が発電する原理は、乙第4号証 1ページ目【図1】で説明されています。
依って、【請求項1~3】の装置は、日本国内で義務教育を終了した者であれば容易に理解可能で、その発明の属する技術の分野における通常の知識を有する者がその実施をすることができる程度に明確かつ十分に記載したものであると主張します。
2 エネルギー保存の法則は誤りであるとする追加の主張
大きく話が飛びますが『宇宙は膨張している。』とゆう話を聞かれたことがあると思います。なぜ『宇宙は膨張している。』のでしょうか。
風船に空気を吹き込めば、中の空気が増えた分、風船は膨張します。同様に宇宙においても中の物質・エネルギーが増えた分膨張しているのではないでしょうか。
この宇宙の膨張を物理学はどのように説明しているのでしょうか。
およそ150億年前にビッグバンと呼ばれている大爆発によって宇宙は生まれました。そのビッグバンの際に今宇宙に存在している全ての物質・エネルギーが作られました。従って、宇宙の誕生から現在に至るまで物質・エネルギーの総量は増えもせず減りもせず一定に保たれています。(エネルギー保存の法則)
ではなぜ宇宙は膨張しているのでしょうか。この問いに対して物理学は
『宇宙背景輻射が・・・。』
或は 『暗黒物質が・・・・・・。』などと意味不明な説明しかしていません。
およそ150億年前にビッグバンと呼ばれる爆発(膨張=物質・エネルギーの増大)が始まりました。膨張により増えた物質等が、さらに膨張(増大)することから、その膨張は幾何級数的にその規模を拡大し、およそ150億年が経過した今現在も続いています。
このように説明するのが最も合理的ではないでしょうか。
エネルギーが保存されるとする考えでは、今の宇宙の規模及びその膨張を合理的に説明することはできません。
エネルギー保存の法則は誤りであると改めて主張します。
以上
訴 状
知的財産高等裁判所 御中
令和 6年 2月 19日
原告 今井 直孝
(送達場所)原告 今井 直孝
〒100-8915
東京都千代田区霞が関三丁目4番3号
被告 特許庁長官 濱野 幸一
審決取消請求事件
訴訟物の価額 算定困難
貼用印紙 1万3000円
請求の趣旨
1 特許庁が不服2022-19872号事件について令和 5年12月11日にした審決を取り消す。
2 訴訟費用は被告の負担とする。
との判決を求める。
請求の原因
1 特許庁における手続の経緯
原告は、発明の名称を「加速回収発電機」とする発明について、令和 3年 4月27日に特許出願をしたが、令和 4年 8月15日付けの拒絶査定を受けたので、令和 4年12月 8日、これに対する不服の審判を請求した。
特許庁は上記請求を不服2022-19872号事件として審理をした上、令和 5年12月11日、「本件審判の請求は,成り立たない。」との審決をし、 その謄本は令和 6年 1月23日原告に送達された。
2 出願から審決に至るまで、古典力学には重大な欠陥が有ることを指摘してまいりましたが、被告はこれを無視し「欠陥のある古典力学」の範囲内で審決をしました。その審決の理由は、審決謄本記載のとおりでありますが、その認定判断には誤りがあり、違法として取り消されるべきであります。
3 審決の理由に対する認否
(1) 「第1 手続の経緯」については、認める。
(2) 「第2 本願発明」については、認める。
(3) 「第3 原査定の拒絶の理由の概要」については、争う。
(4) 「第4 原査定の拒絶の理由についての判断」については、争う。
(5) 「第5 むすび」については、争う。
4 原告の主張
(1) 古典力学の欠陥 その1(エネルギー保存の法則の欠陥)
古典力学の平行軸の定理において、遠心力項の記述が全て欠落しています。
[平行軸の定理]には、次のように記述されています。以下引用
剛体の1つの軸、および重心 \(G \) を通ってこの軸に平行な軸(両軸の間隔 \(h \) )に関する慣性モーメントをそれぞれ \(I \) , \(I_G \) とする。両軸に垂直な面を・・・
《途中省略》
・・・上の式は
\(I=I_G+Mh^2 \) (5・3)
これを平行軸の定理という。すなわち、「剛体の重心を通るある軸に関する慣性モーメント \(I_G \) がわかれば、それに平行な任意の軸に関する慣性モーメント \(I \) は (5・3)から計算できる。」 ・・・
(新稿 物理学概説 上巻 多田政忠 編 より引用)
平行軸の定理により任意の軸に関する慣性モーメント \(I \) は計算できます。しかし、剛体の重心に作用する遠心力(外力)を考慮しなければ、剛体の回転運動を記述することはできません。
[回転軸が剛体の重心を通る場合]
回転する剛体の重心に遠心力(外力)は作用せず、エネルギーが保存されます。
[回転軸が剛体の重心を通らない場合]
回転する剛体の重心に遠心力(外力)が作用する為、外力が作用した分だけエネルギーが増える場合とエネルギーが減る場合があります。但し多くの場合は、剛体の回転運動自体が成立しません。
(新稿 物理学概説 上巻 多田政忠 編 111ページ)
理学・工学の分野において[回転軸が剛体の重心を通らない場合]を取り扱うことは、まずありません。「平行軸の定理」に遠心力に関する記述が一切なくてもほぼ影響はありませんでした。そのことが400年以上にわたって誰も気が付かなかった原因かもしれません。
理学・工学の分野では[回転軸が剛体の重心を通る場合]
=[剛体の回転が成立する場合]
=[エネルギーが保存される場合]のみを取り扱っているのです。
「回転軸が剛体の重心を通らない場合」で、且つ「剛体の回転運動が成立する場合」を3例挙げておきます。
[ドア]
ドア(扉)の重心はドアの中心付近にありますが、回転軸はドアの端のヒンジ部分にあります。車のボンネット・飛行機のフラップ等も同類ですが、それらに発生する遠心力が工学上問題になることはありません。
[振動モーター]
回転する剛体に発生する遠心力が、工学上利用されている数少ない例です。
[ロボットアーム]
アームの重心は各アームの中心付近に在りますが、回転軸は各関節に在ります。ロボットが二足歩行で歩く、又は駆け足をしているのは見たことがあります。しかし、走ろうとすると四足の犬型ロボットになってしまうのは、各パーツに発生する遠心力を考慮していないからではないでしょうか。
古典力学では回転する剛体の遠心力を無視又は考慮しないことにより[エネルギーが保存される場合]のみを取り扱っています。古典力学の法則は自然法則の一部ではありますが、古典力学に全ての自然法則が含まれている訳ではありません。被告のように
古典力学 = 自然法則
として審決することは、その認定判断には誤りがあり、違法として取り消されるべきであると主張します。
【被告の反論を求める―01】
「平行軸の定理に於いて遠心力に関する記述が全て欠落している。」ことに関して、被告の反論を求めます。
【被告の反論を求める―02】
「古典力学が自然法則の全てではない。」ことに関して、被告の反論を求めます。
(2) 古典力学の欠陥 その2(作用・反作用の法則の欠陥)
[無反動材推進機]
[無反動材推進機]とは、回転するアームの先端に取付けた錘に発生する遠心力により推進力を得る装置のことです。
以下簡単に[無反動材推進機]の作動原理を説明します。
質量 \(m \) の錘を、長さ \(r \) のアームに取付け、回転軸を加速・減速する場合を考えます。
図-01
図-01左側下の減速する場合の図を180°回転して、左上の加速する場合の図と合成したのが右側の図になります。錘を加速・減速する際の反作用が、同じ方向を向くのですが、これらは減速項にしかなりません。反作用の大きさは \((ω_1 - ω_0) \) に比例し、遠心力差の大きさは \((ω_1^2 - ω_0^2) \) に比例しますので、ある程度大きな出力を得ようとすると、遠心力差 \((ω_1^2 - ω_0^2) \) を選択せざるを得ません。
このような「前後の遠心力の差で推進力を得る装置」のアイデアは、昭和60年に 麓 毅 氏が出願した「推進力発生装置」(特許出願公開番号 昭62-103486)の他多数が出願されています。
実際に作成した「無反動材推進機の試作品」が作動する状況の動画を提出します。
(電磁データのリンクでご覧ください。また、電磁データ提出のDVD-Rの中にも動画ファイルを入れてあります。)
アームを回転させず、前方で往復運動とした場合の作動状況です。
直進しませんが、錘が1個の場合の作動状況です。
これらの「無反動材推進機の試作品」は「作用・反作用の法則」に反して作動しています。また、間欠的にではありますが「消費電力が一定で一方向力 \(F \) を発生させる」ことに成功しています。錘の数を増やし大出力化すれば、完全に「消費電力が一定で一方向力 \(F \) を発生させる装置」が実現すると考えています。
宇宙空間においては、「高温高圧のガスを噴出し、てその反動で推進力を得る」(ロケットエンジン)しか推進力を得る方法が無いと信じられています。人工衛星などは姿勢制御用の小型のロケットエンジンの燃料を使い切れば、後は宇宙ゴミとなります。古典力学及び「作用・反作用の法則」が正しいと信じている人間には、そうしか方法がありません。しかし、「作用・反作用の法則の欠陥」を認知している人間にとってはそうではありません。
「古典力学の欠陥」を認知せずに審決することは、その認定判断には誤りがあり、違法として取り消されるべきであると主張します。
【被告の反論を求める―03】
「無反動材推進機」の作動原理の説明に対して、被告の反論を求めます。
【被告の反論を求める―04】
「無反動材推進機の試作品が実際に作動している。」との主張に対して、被告の反論を求めます。
【被告の反論を求める―05】
「消費電力が一定で一方向力 \(F \) を発生させる装置」が技術上実現可能との主張に対して、被告の反論を求めます。
(3) 審決への反論
[審決]
第3 原査定の拒絶の理由の概要
●理由1 (特許法第2 9条第1項柱書(発明該当性) )
(2ページ ●理由1の下から2行目)
・・・特許法第2条第1項でいう「自然法則を利用した」ものではないため、 「発明」に該当せず、特許を受けることができない。
[反論]
「古典力学の欠陥」に反するだけで、「自然法則を利用した」ものです。「古典力学の欠陥」に関しては、前述「古典力学の欠陥 その1」「古典力学の欠陥 その2」に記述しました。
[審決]
●理由2 (特許法第3 6条第4項第1号(実施可能要件) )
(2ページ 下から3行目)
・・・等加速度運動で消費電力が一定であるという事象をどのように実施すればよいのかが不明であり、・・・
[反論]
「等加速度運動で消費電力が一定であるという事象」はリニアモーターにより近似的に実施可能です。又、[無反動材推進機]により実施可能です。
[審決](2ページ 下から2行目)
・・・また、運動エネルギーが加速で消費したエネルギーを上回る状態がなぜ発生するのか不明である。・・・
[反論]
度重なる指摘にもかかわらず、被告は「エネルギー保存の法則の欠陥」を全く認知していません。古典力学は「エネルギーが保存される場合」のみを取り扱っており、「エネルギーが保存されない場合」は、これまで知られていなかっただけです。
[審決](2ページ 一番下の行から 3ページにかけて)
・・・この出願の発明の詳細な説明の記載は、当業者が請求項1~3に係る発明を実施することができる程度に明確かつ十分に記載されたものでない。
[反論]
「古典力学の欠陥」を認知した当業者であれば、発明を実施することができる程度に「明確かつ十分に」記載されております。
[審決]
第4 原査定の拒絶の理由についての判断
(10ページ 中央より少し下)
すると、リニアモーターカーが運転開始から \(t \) 秒後までにされた仕事 \(W \) は、式(2)に式(3)を代入して、以下の式で表すことができる。
\(W=1/2\ Fat^2 \) ・・・式(4)
そうすると、式(1)で表される運動エネルギー \(E_2 \) を生じさせた、リニアモーターカーが運転開始から \(t \) 秒後までにされた仕事 \(W \) は、時刻 \(t \) の二次関数で表され、一次関数とはならない。
[反論]
運動エネルギーの変化分が、物体にした仕事に等しいので、「リニアモーターカーのした仕事」を計算すれば当然そうなります。問題はその仕事をした間にリニアモーターが、どれだけの電力を消費したかです。「リニアモーター」を、近似的に「消費電力が一定で一方向力 \(F \) を発生させる装置」と看做しております。
「消費電力が一定で一方向力 \(F \) を発生させる装置」が技術上実現可能との主張に対して、反論をお願い致します。
[審決] (12ページ 中央あたり)
(3)審判請求人の主張について
審判請求人は、審判請求書の「3.本願発明が特許されるべき理由」の「●理由2(特許法第36条第4項第1号(実施可能要件))」において、「“消費電力が一定で一方向力 \(F \) を発生させる装置”の試作品を提出しております。」と主張しているが、令和4年2月14日受付の物件提出書により提出された無反動材推進機の試作品をみても、その作動状況から、運動エネルギー \(E_2 \) が消費エネルギー \(E_1 \) よりも大きくなる定格運転時刻 \(t_{03} \) におけ る定格運転角速度の \(ω_{03} \) が存在し、錘の角速度を該定格運転角速度の \(ω_{03} \) として、減速の際に錘の余剰エネルギーを回収して電力を得ていることは把握できない。
したがって、審判請求人の主張は採用できない。
[反論]
提出したのは「無反動材推進機の試作品」です。「消費電力が一定で一方向力 \(F \) を発生させる装置」が技術上実現可能であることを示すために提出しました。エネルギーを回収する機構等は実装しておりません。
[審決](13ページ 中央より少し上)
・・・運動エネルギー \(E_2 \) は、消費エネルギー \(E_1 \) と等しくなるから、運動エネル ギー \(E_2 \) が消費エネルギー \(E_1 \) よりも大きくなるという前記した前提は、エネルギー保存の法則に反するものである。
[反論]
前述「古典力学の欠陥 その1(エネルギー保存の法則の欠陥)」に反論を記述しております。被告は「古典力学の欠陥」を認知しないどころか、強引に無視しようとしています。
[審決](13ページ 中央あたり)
・・・得る(あるいは発電する)ための原理は、エネルギー保存の法則に反する事項を前提としており、本願発明1~本願発明3は自然法則に反するものである。
[反論]
「自然法則に反するもの」ではなく「古典力学の欠陥」の「欠陥」に反するものです。
[審決](13ページ 一番下)
・・・発明の詳細な説明の段落【0002】~【0005】の記載に誤りがあることは、前記1(2)オークに記載したとおりである。
[反論]
段落【0002】~【0005】の記載に誤りはありません。記載に誤りがあるのは「古典力学」です。
[審決](14ページ)
そうすると、本願発明1~本願発明3は、特許法第2条第1項でいう「自然法則を利用した」ものではないため、特許法第2 9条第1項柱書に規定される「発明」に該当しない。
第5 むすび
以上のとおり、この出願は、発明の詳細な説明の記載が、特許法第36条第4項第1号に規定する要件を満たしておらず、また、本願発明1~本願発明3は、特許法第29条第1項柱書に規定する要件を満たしていない。
そうすると、この出願は、拒絶すべきものである。
よって、結論のとおり審決する。
[反論]
前述「古典力学の欠陥 その1(エネルギー保存の法則の欠陥)」「古典力学の欠陥 その2(作用・反作用の法則の欠陥)」をもって審決そのものへの反論とします。
【被告の反論を求める―01】
「平行軸の定理に於いて遠心力に関する記述が全て欠落している。」ことに関して、被告の反論を求めます。
【被告の反論を求める―02】
「古典力学が自然法則の全てではない。」ことに関して、被告の反論を求めます。
【被告の反論を求める―03】
「無反動材推進機」の作動原理の説明に対して、被告の反論を求めます。
【被告の反論を求める―04】
「無反動材推進機の試作品が実際に作動している。」との主張に対して、被告の反論を求めます。
【被告の反論を求める―05】
「消費電力が一定で一方向力 \(F \) を発生させる装置」が技術上実現可能との主張に対して、被告の反論を求めます。
(4) まとめ
上記【被告の反論を求める―01】~【被告の反論を求める―05】への、被告の反論をもとめます。
以上
添付書類
1 審決謄本 1通
01 地球コマの挙動
古典力学によれば ”コマは中心角 \(θ = 一定\)で才差運動する” ことになっていますが、そのようなコマはこの世には存在しない事を示しておきます。
地球コマを回すのも、なかなか難しいようです。
動画の最初の方の数秒~十数秒のみを切出せば”中心角一定で才差運動している”様に見えます。
才差運動により生じた角運動量変化 \(dL\) と重力のモーメントが釣り合うのであれば、歳差運動の加速により \(dL\) が大きくなり地球コマは立上っていく筈なのですが、そうはならないようです。
フレームの接地点の摩擦抵抗を変化させるために、カッターマットの上で回してみました。
接地点の摩擦抵抗が大きくなった為、フレームの回転が止まったようにも思えるのですが、はっきりしません。
フレームの接地点の摩擦抵抗を大きくするために、コピー用紙の上で回してみました。
”地球コマ” は ”コマ” と ”フレーム” により二重コマを構成しています。
\begin{split}
1 &: \ コマの減衰( 空気抵抗・軸受の摩擦抵抗) \\
2 &: \ 二重コマの才差運動\\
3 &: \ 二重コマの章差運動\\
4 &: \ 二重コマの才差運動の加速\\
5 &: \ フレームの回転の加速・減速\\
6 &: \ フレームの接地面の摩擦力\\
7 &: \ フレームの接地面の摩擦力により生じるモーメント力\\
& \hspace{ 70pt } (フレームは起き上がろうとする)\\
\end{split}
少なくとも以上の力・モーメント力が相互作用しながら回転する為、地球コマは回すたびにその挙動が変わります。章差運動がハッキリと判る動画は撮れなかったのですが、才差運動が加速しているのは判ると思います。
私が持っている地球コマを数度回しただけで『中心角一定で才差運動するコマなど、世の中に存在しない。』と断定するのは乱暴な気がします。ですが、次の 才差運動の理論解 を読んで頂ければ納得してもらえるかもしれません。
02 才差運動の理論解
まず、教科書に書いてある説明です。
図 - 01
\[ dL = mgh \sin θ \]
『才差運動により生じた角運動量変化 \(dL\) と重力のモーメント \(mgh \sin θ \) が釣り合う。』 と書いてあります。この説明は、コマが倒れないことの説明にはなっています。
\[ 才差運動している = コマが動いている \]
のですから、静力学的なモーメント力の釣合で説明できる訳がありません。少なくとも空気抵抗に逆らって才差運動しているわけですから下の図に示す \(\color{red}{dL_z}\) が存在し、それに釣合うモーメント力が存在しないことを示さなければ、才差運動の説明にはなりません。
図 - 02
まず最初に私が気が付いたのは”才差運動による遠心力”です。
図 - 01 に才差運動による遠心力項を加えます。
図 - 03
これだけでは解くことが出来ません。これを解くためには、上の図の中に、あと二つ要素を見つけなければなりません。
図 - 03 の重力 \( mg \) と才差運動の遠心力 \(mh \sin θ\ Ω^2 \) をモーメント力の表示 \( dL_g \), \( dL_s \) に切り替え、 \( dL \) を \( dL_l \) と表示します。
図 - 04
\begin{split}
\color{blue}{dl_g} &\ :\ 重力によるモーメント力\\
\color{red}{dl_s} &\ :\ 才差運動の遠心力によるモーメント力\\
&\hspace{ 140pt }とした場合\\
\end{split}
\begin{eqnarray}
\color{blue}{dl_g}\ &=& \ \color{blue}{mgh \sin θ} \\
\color{red}{dl_s}\ &=& \ \color{red}{h \cos θ\ mh \sin θ\ Ω^2} \\
\end{eqnarray}
一般的には \( \color{blue}{dl_g} + \color{red}{dl_s} ≠ \color{blue}{dL_l} \) となり章差運動が発生します。
\( \color{blue}{dl_g} + \color{red}{dl_s} \gt \color{blue}{dL_l} \) の場合には、中心角は徐々に大きくなりコマは倒れていきます。
\( \color{blue}{dl_g} + \color{red}{dl_s} \lt \color{blue}{dL_l} \) の場合には、中心角は徐々に小さくなり最終的にコマは直立します。
\( \color{blue}{dl_g} + \color{red}{dl_s} = \color{blue}{dL_l} \) の場合は、そんな場合はまず存在しないのですが、コマは教科書に書いてある通り中心角一定で才差運動します。
図 - 03 の中で見つけなければならない二つの要素の内、一つ目の要素はコマの章差運動です。地球コマが回転している動画の数秒~十数秒を切出せば、地球コマは中心角一定で回転しているように見えるのですが、実際にはかなりゆっくりとですが、立上り又は倒れこみの運動をしています。
ここでは、コマが倒れこんでいるとして図の中に一つ目の要素を加えます。
図 - 05
とりあえず、章差運動による角運動変化 \( \color{red}{dL_m} \) を加えました。上の図により四次方程式が立てられるのですが、この方程式を解くことは出来ませんでした。
方程式を諦めて、\( \color{blue}{dL_l} \) と \( \color{red}{dL_m} \) の角度関係に注目することにしました。 \( \color{blue}{dL_l} \) と \( \color{red}{dL_m} \) は直交していません。地球儀の緯線と経線と同じで、赤道上以外では90度以上で交差します。直交はしていませんが"直交していると見なしてやる"ことは出来ます。いわゆる、"球面上の幾何学"です。
\( \color{blue}{dL_l} \) と \( \color{red}{dL_m} \) が直交していると見なしてやると、自動的に二つ目の要素があることに気が付きます。
図 - 06
\( \color{red}{ dL_n } \) コマの減衰成分です。これで解けました。
\[ ( \ \color{blue}{dL_l} \ , \color{red}{dL_m} \ , \color{red}{dL_n} \ ) = ( \ dL_x \ , dL_y \ , dL_z \ ) \tag{02-01}\ \]
\( \normalsize{ lmn } \) 系から見た角運動量の変化が、 \( \normalsize{ xyz } \) 系から見た角運動量の変化に等しい。
ここで
\begin{split}
\color{blue}{dL_l} &: \ コマの才差運動により発生するモーメント力 \\
\color{red}{dL_m} &: \ コマの章差運動により発生するモーメント力\\
\color{red}{dL_n} &: \ コマの減衰成分\\
dL_x &: \ x 軸方向のモーメント力 \\
dL_y &: \ y 軸方向のモーメント力 \\
dL_z &: \ z 軸方向のモーメント力(才差運動を駆動するモーメント力) \\
\\
(\color{red}{dL_s} &: \ 才差運動の遠心力によるモーメント力) \\
(\color{blue}{dL_g} &: \ 重力によるモーメント力) \\
\end{split}
では、\(x,y,z\) の各方向のモーメント力について見ていきましょう。まず \(xy\) 方向です。
図 - 07
上の図により
\begin{eqnarray}
\color{red}{ dL_x } &=& \color{red}{ dL_m \ \cos θ } \ - \ \color{red}{ dL_n \ \sin θ } \tag{02-02}\ \\
\color{blue}{ dL_y } &=& \color{blue}{mgh \ \sin θ} \ + \ \color{red}{ h \ \cos θ \ mh \ \sin θ \ Ω^2 } - \color{blue}{\ dL_l} \ \tag{02-03}\
\end{eqnarray}
\( \color{red}{dL_x} \) は通常ゼロにはなりませんが、この方向にコマの回転の自由度が無い( \( \normalsize{ y } \) 軸, \( \normalsize{ z } \) 軸廻りに回転可能ですが、 \( \normalsize{ x } \) 軸廻りに回転不可能)ため、コマの系は不安定系となります。動いているのですから当然です。静力学的な力の釣合で説明できる訳が有りません。また、 \( \color{red}{dL_x}\) は、コマの接地点に一方向力を発生させている筈です。(才差運動に伴い、方向が変化するので意味は有りません。接地点の摩擦力により \( \normalsize{ x,y } \) 方向の力は相殺されるため、下向きの力のみが残るのかもしれません。)
\( \color{blue}{dL_y} \) が章差運動のモーメントです。一般的にこのベクトルもゼロにはならず、章差運動が起こります。
\( \color{blue}{dL_y} = 0 \) とし、左辺第二項(才差運動の遠心力によるモーメント力)を無視したのが、古典力学の才差運動の説明になります。
\begin{eqnarray}
0 &=& \color{blue}{mgh \ \sin θ} \ + \color{red}{ 0 }(無視) - \color{blue}{\ dL_l} \\
\color{blue}{dL_l} &=& \color{blue}{mgh \sin θ} \hspace{ 70pt } 古典力学の説明
\end{eqnarray}
\( y \) 方向には、これらのモーメント力の他に フレームの接地面の摩擦力により生じるモーメント力(フレームは起き上がろうとする)が存在しますが、話が面倒になるだけなので、ここでは触れません。
次に \( z \) 方向です。この方向のモーメント力が、才差運動の原因となります。
図 - 08
上の図により
\[ \color{red}{ dL_z } = \color{red}{ dL_n \cos θ }+ \color{red}{ dL_m \sin θ } \tag{02-04}\ \]
\( \color{red}{dL_z}\) は才差運動 \( Ω \) の角加速度成分であり、これにより才差運動が引き起こされます。 \( \color{red}{dL_z} \) が空気抵抗と釣合うような特殊な場合を除き、一般的には才差運動は \( \color{red}{dL_z} \) により加速されます。
\( \color{red}{dL_z} \) の主な成分はコマの減衰成分です。モーターに取り付けられたコマのように、一定角速度で回転しているコマは、才差運動も章差運動もしません。ただし、電源を入れた直後や切った直後には、コマが加速・減衰するために、これらの運動が観察される場合が有ります。(糸で吊るしたモーター等)また、コマの回転軸が水平な場合も、コマの加速・減衰成分に \(z \) 方向の成分が無い為に才差運動・章差運動は観察されません。
------------以下 編集中------------
03 棒の法則
2005年4月25日歯の痛みに耐えられず、朝一で歯医者に行きました。虫歯になった親知らずを速攻で抜かれ、11時頃部屋に戻りテレビをつけると、電車が脱線したニュースが流れていました。痛み止めを飲みボーとした頭で、ただボーとテレビを見ていました。
電車はなぜ脱線したのか?
尼崎の手前 300Rに入ったところで急制動をかけたらしい。
電車一両あたりの重量は約 25t。これが 300R を走行していました。つまり、重さ 25 t 直径 600m の巨大なコマが回転していたのと同じことになります。ゆえに、電車には巨大なコマとしての角運動量\(\ L_1\ \) が有ったことになります。
図 - 09
この巨大なコマに急制動をかけた事により、角運動量は\(\ L_1 → L_2\ \)となります。
その際、減衰モーメント\(\ \color{red}{dL}\ \)が発生します。
図 - 10
発生した減衰モーメント\(\ \color{red}{dL}\ \)は、電車の重心に作用します。
図 - 11
\(\ \color{red}{dL}\ \)は偶力として電車の車輪に作用し、前輪を軌道の外側に、後輪を軌道の内側に押す力として作用します。
図 - 12
実際に計算していないので、減衰モーメントが脱線にどの程度影響したのか解かりませんが、たぶん遠心力と同じ桁程度の力として作用したのではないでしょうか?
カーブに於いて制動をかけた場合の減衰モーメントは、ほとんど考慮されていませんが、これを経験上知っている人たちがいます。いわゆるドリフト族と呼ばれる人たちです。
右カーブに於いて急制動をかけると、車体はカーブの外に向きます。逆に、急加速をかけると車体はカーブの内側に向きます。
左カーブに於いても同様に、急制動をかけると、車体はカーブの外に向き、急加速をかけると、車体はカーブの内側に向きます。
図 - 13
「笑っていいとも」が終わると、教育放送以外すべてのチャンネルが特別番組になりました。ボーとした頭でただボーとテレビを見ていました。歯を抜いたときの麻酔が切れてきたのか徐々に痛みがひどくなっていくような気がしていました。
電車はなぜ脱線したのか?
遠心力・ドリフト以外に要因はないか?
巨大なコマです。巨大なコマを地球の赤道上に置くとどうなるでしょうか?地球の自転により、巨大なコマには\(\ \color{red}{dL}\ \)が発生し、極に向かって倒れようとするはずです。別に赤道上に置かなくても、尼崎に置いても同じことです。
図 - 14
地球の自転の角速度の影響を受けるのであれば、公転の角速度の影響も受けるはずです。自転・公転の合成角速度は深夜0時に最大となり、昼12時に最小となります。
図 - 15
脱線事故は、自転・公転の合成角速度が最大となる深夜0時ではなく、午前9時過ぎに起きています。自転・公転の合成角速度の影響は受けていなかったのでしょうか?(コマがまだ小さすぎるのでしょうか?)それとも、午前9時過ぎに何か特別な意味が有ったのでしょうか?
太陽系は銀河系の縁に有り、銀河系は約2億5千万年の周期で自転しています。その銀河系は銀河団の中に有り、銀河団の周りを公転しています。(銀河団の自転)銀河団は超銀河団の中に有り・・・
そのような構造が、現在6層ほど確認されているようです。
午前9時過ぎに何か特別な意味が有るとすれば、尼崎における地球の自転角速度の方向と太陽系の絶対合成角速度の方向が一致したとは考えられないでしょうか?とすれば、脱線事故は4月25日午前9時過ぎ尼崎の300Rで急制動をかけた電車だけに特異的に起きる現象だったのでしょうか?
と、ここまで考えたとき、頭の中で電車よりはるかに巨大な物がクルクル回りはじめました。
地球 と 太陽
地球が太陽の周りを公転すれば、地球と太陽の重心に角運動量\(\ {L_1}\ \)が存在することになります。地球と太陽の重心は、ほとんど太陽の重心と一致するのでしょうが、解かりやすいように描くと
図 - 16
この角運動量\(\ {L_1}\ \)に太陽系絶対合成角速度\(\ {ω_s}\ \)が作用すると\(\ \color{red}{dL_1}\ \)が発生します。
発生した\(\ \color{red}{dL_1}\ \)は、地球と太陽の重心に作用し、地球の軌道面を傾けようとするはずです。
図 - 17
太陽系の各惑星と太陽との慣性モーメント\(\ {I_p}\ \)は
\begin{eqnarray}
I_p &=& \sum mr^2\ \\
\\
&=& m_sr_s^2 + m_pr_p^2\quad(太陽項+惑星項)
\end{eqnarray}
太陽項が非常に巨大な項となるため、各惑星と太陽との慣性モーメントは各惑星により微妙に異なることになります。
太陽系の各惑星と太陽との角運動量を\(\ {L_p}\ \)各惑星の公転角速度\(\ {ω_p}\ \)とすると
\[ L_p = I_pω_p \]
角運動量\(\ {L_p}\ \)が大きい惑星ほど\(\ \color{red}{dL}\ \)も大きくなり、軌道面の傾きも大きくなることになります。各惑星の慣性モーメント\(\ {I_p}\ \)が惑星により微妙な差であるとすると(太陽項が巨大)公転角速度の速い惑星ほど軌道面の傾きが大きいことになります。各惑星の公転周期と軌道面の傾きを見てみると、なんとなく辻褄が合っているような気がします。
銀河系の自転半径・公転半径に比べれば、地球の公転半径は微小な距離と考えられます。そこで、地球の公転を無視して自転のみに注目すると、自転の角運動量\(\ {L_2}\ \)が存在することになります。この角運動量\(\ {L_2}\ \)に太陽系絶対合成角速度\(\ {ω_s}\ \)が作用すると\(\ \color{red}{dL_2}\ \)が発生します。\(\ \color{red}{dL_2}\ \)は地球の重心に作用し、地軸を傾けようとするはずです。
図 - 18
実際に地軸は23.4度傾いています。
惑星の軌道面が傾く運動も、地軸が傾く運動も、共に角加速度運動です。つまり徐々に加速しなければなりません。ですが、惑星の軌道面が徐々に傾いており、加速しているという話も、地軸が徐々に傾いており、加速しているという話も、聞いたことがありません。
惑星の軌道面が傾く運動は、なぜ止まってしまったのか?
地軸が傾く運動は、なぜ止まってしまったのか?
これらが説明できれば、惑星軌道面の傾き及び地軸の傾きは、太陽系絶対合成角速度\(\ {ω_s}\ \)の作用の結果と考えて良いことになります。
太陽系絶対合成角速度\(\ {ω_s}\ \)の最大の要素は銀河系の自転角速度\(\ {ω_{G1}}\ \)と考えられます。銀河系は銀河団の中に有り、銀河団もまた自転しているはずです。(自転角速度\(\ {ω_{G2}}\ \)) とゆうことは、銀河系の自転角速度\(\ {ω_{G1}}\ \)は、銀河団の自転角速度\(\ {ω_{G2}}\ \)に対してプラス項(加速項)として働く時期と、マイナス項(減速項)として働く時期が有ることになります。
図 - 19
つまり、前記の2つの運動は、銀河系の自転角速度\(\ {ω_{G1}}\ \)により、約2億5千万年周期で加速された分だけ減速されることになります。宇宙には6層の構造が有るそうですが、下位の構造の自転による角速度変化は、上位の構造の自転角速度に対し、必ずプラスマイナスゼロになるはずです。ゆえに、宇宙の最上位構造が静止している(回転していない)のであれば、前記の2つの運動は、止まってしまう時期が有ってもおかしくないことになります。
最後に、地球から観測される他の銀河は、なぜ方向がばらばらなのでしょうか?真横から見える銀河もあれば、渦が見える銀河もあります。これは、地軸の傾いていく運動とほぼ同じ説明になります。銀河の自転による角運動量Lに、その銀河の絶対合成角速度\(\ {ω}\ \)が作用し、角加速度\(\ {dL}\ \)を発生させます。\(\ {dL}\ \)は銀河の重心に作用し、その銀河の自転軸を傾ける作用をします。
まとめ
回転しているコマ
回転しているコマの回転軸には棒が刺さっている。
よって、回転軸に関する角運動量が考慮される。
カーブを走行中の電車
カーブを走行中の電車の回転軸には棒は刺さっていない。
よって、回転軸に関する角運動量は考慮されない。
地球の自転
地球の自転軸に棒は刺さっていない。
よって、地球の自転軸に関する角運動量は考慮されない。
惑星の公転
惑星の公転軸に棒は刺さっていない。
よって、惑星の公転軸に関する角運動量は考慮されない。
地球から見える他の銀河
銀河の自転軸に棒は刺さっていない。
よって、銀河の自転軸に関する角運動量は考慮されない。
棒の法則
古典力学に於いて、回転軸に棒が刺さっていない場合は、
その回転軸に関する角運動量は考慮されない。